SVKM's Narsee Monjee Institute of Management Studies Mukesh Patel School of Technology Management & Engineering

Program: B Tech (All program except CSBS, CSDS), MBA				Semester: I	II / IV / VII /VIII	
Tech Mechanical and Computer, B Tech Integrated						
Mechanical and Computer						
Course: Co	mplex Variab	les and Tran	sforms		Code: 702BS0	OC057
Teaching Scheme				Evaluation Scheme		
Lecture	Practical	Tutorial		Internal (Continuous	Term End
(Hours	(Hours per	(Hours	Credit	Assessm	nent (ICA)	Examinations(TEE)
per week) week) per week) (Mark					ks - 50)	(Marks- 100)
3 0 1 4 Marks 5				Scaled to 50	Marks Scaled to 50	
Pre-requisite: Calculus, Linear Algebra and Differential Equations						

Course Objective

This course aims to instil in students an understanding of Complex Variables, Laplace Transforms, Fourier series, Fourier Transforms and their applications. It equips the students with mathematics

fundamentals necessary to formulate, solve and analyse complex engineering problems.

Course Outcomes

After completion of the course, the student will be able to -

- 1. demonstrate understanding of the concepts of Complex variables, Laplace Transforms, Fourier series and Fourier Transforms
- 2. solve problems based on complex variables, Laplace Transforms, Fourier series and Fourier Transforms
- 3. apply the techniques of Complex variables, Laplace Transforms, Fourier series and Fourier

Transforms to solve engineering problems

Detailed Syllabus Unit | Description Duration 1 Complex Variables - Differentiation Complex differentiation, Cauchy-Riemann equation, analytic functions, 07 harmonic functions, harmonic conjugate, Elementary analytic functions (exponential, trigonometric, logarithmic functions), Conformal mappings: definition and problems, Mobius transformation and their properties. 2 **Complex Variables - Integration** Contour Integrals: definition and problems, Cauchy-Goursat theorem, Cauchy 08 Integral formula, Zeros and singularities of analytic functions, Taylor's series, Laurent's series, Residues, Cauchy Residue theorem. **Laplace Transforms** Definition of Laplace Transform, Laplace Transform of 1, eat, sin at, cos at, sinh at, cosh at, tⁿ, Properties of Laplace Transforms: Linearity property, First and second shifting theorems of Laplace Transform, Change of scale property, $L \Box t^n f \Box t$ 11 $\Box\Box$, \Box , $L\Box f$ $\Box t\Box \Box$, $L\Box \Box f\Box u\Box du\Box$, Evaluation of Inverse Laplace Transform partial fraction, Convolution theorem, Laplace Transforms of Periodic functions, Unit step functions, Dirac delta functions. Applications: Evaluation of Integrals using Laplace Transforms, Solving initial and boundary value problems involving ordinary differential equations.

SVKM's Narsee Monjee Institute of Management Studies Mukesh Patel School of Technology Management & Engineering

4	Fourier Series Orthogonality and Orthonormality, Periodic function, Trigonometric Series, Dirichlet's conditions, Euler's formulae (Derivative of Fourier coefficients a_0 , a_n , b_n is not expected), Fourier Series of Functions for the interval $[\Box, \Box \Box \Box]$ and $[\Box, \Box \Box \Box]$, Functions having points of discontinuity, Even and odd functions, half range sine and cosine expansions, Complex form of Fourier Series. Applications: Applications to Wave equation, Heat equation and Laplacian equation.	12
5	Fourier Transforms Fourier integral theorem, Fourier sine and cosine integral. Fourier Transform, Fourier Sine Transform, Fourier Cosine Transform, Properties of Fourier Transforms (Linearity property, Change of scale property, Shifting property), Inverse Fourier Transform, Inverse Fourier Sine Transform, Inverse Fourier Cosine Transform, Finite Fourier Transform. Applications: Solving differential equations using Fourier Transforms.	07
	Total	45

Text Books

- 1. B. V. Ramana, *Higher Engineering Mathematics*, 1st Edition, McGraw Hill Education, 2017.
- 2. T. Veerarajan, *Engineering Mathematics*, 3rd Edition, McGraw Hill Education, 2007.

Reference Books

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley India, 2017.
- 2. B. S. Grewal, Higher Engineering Mathematics, 44th Edition, Khanna Publishers, 2017.
- 3. James Ward Brown, Ruel V. Churchill, *Complex Variables and Applications*, 8th Edition, McGraw Hill Education", 2014.

Tutorial Work

Minimum Ten Tutorial exercises based on the syllabus.

Agune

Pate/ SOUND SOUND

Signature (Prepared by Concerned Faculty/HOD)

Program: B Tech /MBA Tech (Computer Engineering /IT)	Semester: IV/III/VIII
B Tech (AI & ML, Cyber Security, CSBS)	
BTI Computer Engineering	
Course: Computer Organization and Architecture	Code: 702CO0C023

Teaching Scheme				Evaluation Scheme		
Lecture (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	Internal Continuous Assessment (ICA) (Marks- 50)	Term End Examinations (TEE) (Marks- 100)	
3	0	0	3	Marks Scaled to 50	Marks Scaled to 50	

Prerequisite: NA

Course Objective

To provide knowledge of the basic principles of the organization, operation and performance of modern day computer systems and the underlying semiconductor circuit architectures used to construct parallel computer components.

Course Outcomes: After completion of the course, student will be able to -

- 1. Discuss the functional blocks of computers and the interconnections
- 2. Evaluate the memory system
- 3. Explain the components of the Central Processing Unit
- 4. Describe Input Output and Parallel Organization

Detailed Syllabus

Unit	Description	Duration
1	Overview	03
	General Organization and architecture, Structural/functional	
	view of a computer, Computer Functional Components.	
2	System Buses	06
	Overview of basic instruction cycle, Interrupts, Bus	
	interconnection, Elements of bus design, Read and write timings	
	diagram, Bus hierarchy, Bus arbitration techniques.	
3	Memory Organization	10
	Internal Memory- Memory characteristics and memory	
	hierarchy. Cache Memory- Elements of cache design, Address	
	mapping and Translation-Direct mapping, Address mapping and	
	translation- Associative mapping, Address mapping and	
	translation -Set associative mapping, Performance characteristics	
	of two level memory, Semiconductor main memory- Types of	
	RAM, DRAM and SRAM, Chip logic, Memory module	

Signature

	Total	45
	Processors.	
	Flynn's classification of parallel processing Systems, Superscalar	
7	Multiprocessor Processor Organizations	02
	applications, synchronization, coherence.	
	and channels, General-Purpose Graphics Processing Unit, GPU	
	I/O, I/O modules-Interrupt Driven I/O, DMA.I/O processors	
	applications of microprogramming, I/O modules- Programmed	
	Micro Programmed control, Micro instruction format and	
U	Control Unit- Micro Operations, Hardwired Implementations,	0,7
6	Control Unit and Peripheral Devices	09
	Instruction Pipelining, Co-processors, Pipeline processors, RISC and CISC computers.	
	addressing, Processor Organization and Register Organization,	
	Basic Instruction Cycle and Instruction set, Formats and	
5	Central Processing Unit	06
	multipliers, Overview of math coprocessor.	
	speed adders multipliers, Block diagrams of high speed	
	-Combinational and sequential ALU. Block diagrams of high	
	serial and parallel adder and subtractor, Booth's algorithm, ALU	
_	IEEE 754 data format, IEEE 754 data format numerical, Design of	
4	Data path Design	09
	speed memories- Interleaved memory.	
	organization. High speed memories- Associative memory, High	

Text Books

- 1. William Stallings, Computer Organization and Architecture: Designing and Performance, Prentice Hall, 11th Edition, Pearson Education, 2022.
- 2. John P. Hayes Mc-Graw Hill, *Computer Architecture and Organization*, 2nd Edition, 2010. ISBN-13: 978-1259028564
- 3. Morris Mano, Computer System Architecture, PHI, 3rd Edition, Pearson Education, 2017.

Reference Books:

- 1. Andrew Tannenbaum, *Structured Computer Organization*, 6th Edition, PHI, Pearson Education, 2016.
- 2. Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Naraig "Computer Organization and Embedded Systems" 6th Edition, 2023.

Have

Signature

Program: B Tech/MBA Tech	Semester: IV/ V/VII /VIII
(Computer Engineering, Artificial Intelligence)	
B Tech (CSBS, Computer Science)	
BTI Computer Engineering	
Course: Design and Analysis of Algorithms	Code: 702CO0C010

	Teaching	Scheme		Evaluation Scheme		
Lecture	Practical	Tutorial		Internal Continuous	Town End	
(Hours	(Hours	(Hours	C 1'4	Internal Continuous	Term End Examinations (TEE)	
per	per	per	Credit	Assessment (ICA)		
week)	week)	week)		(Marks-50)	(Marks -100)	
2	2	0	3	Marks Scaled to 50	Marks Scaled to 50	

Pre-requisite: Programming for Problem Solving, Data Structures, Discrete Mathematics

Course Objective

Objective of this course is to demonstrate a familiarity with major algorithm design paradigm. Analyze the asymptotic performance of algorithms and Devise efficient algorithms in common engineering design situations.

Course Outcomes-

After completion of the course, student will be able to -

- 1. Understand the space-time complexity of an algorithm
- 2. Evaluate divide and conquer approach of algorithm design
- 3. Apply greedy technique of algorithm design
- 4. Analyze dynamic programming and Backtracking algorithm design paradigm.

Detailed Syllabus

Unit	Description	Duration	
1.	Introduction		
	What is Algorithms, types of Algorithms: greedy, divide & conquer,	04	
	backtracking, etc. Analysis of Algorithms complexity. Introduction of P,		
	NP, NP Complete and NP hard problems.		
2.	Analysing the Algorithms		
	Time and Space Complexity of Algorithms, Asymptotic notations,		
	Asymptotic order, Properties of big oh, big omega, and big theta,	06	
	Classifying functions by their asymptotic growth rates, Best case, average	00	
	Case and worst case analysis. Master's Theorem and Substitution		
	Method, Recursion Tree Method.		
3.	Divide and Conquer Technique		
		04	

Signature

	The general method, control abstraction for divide and conquer, Finding	
	the maximum and minimum: straightforward and recursive algorithm,	
	Merge sort, Quick sort.	
4.	Greedy Technique	
	The general method, control abstraction, Optimal storage on tapes,	05
	Knapsack problem, Job sequencing with deadlines, Optimal merge	
	patterns, Huffman code.	
5.	Dynamic Programming	
	The general method, principle of optimality, Multistage graphs, Single	08
	source shortest path - Bellman Ford algorithm, 0/1-knapsack, Matrix	
	Chain multiplication, Longest Common Subsequence problem.	
6.	Backtracking	03
	The general method, The n-queens problem, Sum of subsets, Graph	
	coloring.	
	Total	30

Text Books:

- 1. Ellis Horowitz, and Sartaj Sahani, *Fundamentals of Computer Algorithms*, 2nd Edition, University Press, 2008.
- 2. Thomas H. Cormen, Charles E., Leiserson, Ronald L. Rivest, *Introduction to Algorithms*, 2nd Edition, PHI Learning, 2010.

Reference Books:

- 1. Sara Baase and Alan Van Gelder, *Computer Algorithms Introduction to Design and Analysis*, 3rd Ed, Pearson Education, 2002 ISBN-13: 978-8131702444
- 2. Aho, Hopcroft and Ullman, *Data Structures and Algorithms*, Addison-Wesley, Pearson Education 2000. ISBN-13: 978-8178081021

Laboratory Work

8 to 10 experiments (and a practicum where applicable) based on the syllabus

Signature

	Program: B Tech (Artificial Intelligence, Data Science, Computer	Semester: III/IV/ VII/ VIII
	Engineering, Information Technology, CSE (Cyber), AI and ML, AI	
	and DS, CSBS, CSE (DS), Computer Science)	
	MBA Tech (All Programs)	
	B Tech Integrated (Data Science, Computer Engineering, Information	
	Technology)	
ſ	Course: Database Management Systems	Code: 702AI0C001

		J			
	Teaching	Scheme	Evaluation	n Scheme	
Lecture	Practical	Practical Tutorial		Internal Continuous	Term End
(Hours per	(Hours per	(Hours per	Credit	Assessment (ICA)	Examinations (TEE)
week)	week)	week)		(Marks - 50)	(Marks - 100)
2	2	0	3	Marks Scaled to 50	Marks Scaled to 50

Pre-requisite: Nil

Course Objective

The objective of the course is to provide a comprehensive introduction to the fundamental concepts for design and development of database systems, with an emphasis on how to organize, maintain and retrieve - efficiently, and effectively - information from a database management system

Course Outcomes

After completion of the course, students will be able to -

- 1. Describe core concepts of database and model a database management system through ER modelling
- 2. Apply knowledge of relational algebra and structured query language to retrieve and manage data from relational database
- 3. Demonstrate the use of normalization for database design
- 4. Demonstrate the concept of transactions and use modern database techniques such as NoSQL

Detailed Syllabus Unit Description Duration Introduction 1. Database System Applications, Purpose of Database Systems, View of Data, 03 Database Languages, Data Models, Database Users and Administrator Database Design and the E-R Model Overview of the Design Process, The Entity-Relationship Model, Constraints, Entity 05 2. Relationship Diagrams, Reduction to Relational Schemas, Schema Diagrams, Entity-Relationship Design Issues, Extended ER features Introduction to the Relational Model 03 Structure of Relational Databases, Database Schema, Keys, Relational Algebra, Basic 3. operators of Relational Algebra, Structured Query Language Overview of the SQL Query Language, SQL Data Definition, SQL Constraints, Basic 06 4. Structure of SQL Queries, Additional Basic Operations, DML operations, Set operations, Aggregate Functions, Nested Sub-queries, Joins, views

(Head of the Department)

5.	Relational Database Design Features of Good Relational Designs, Problems with bad design, Decomposition using concept of functional dependencies, Armstrong's axioms, Closure of functional dependency, Closure of attribute, Introduction to process of Normalization and de-normalization, Normal Forms- 1NF, 2NF, 3NF, BCNF	05
6.	Transactions What is Transactions? Properties of transaction, Transaction states, Issues with concurrent executions, Schedules, Serializability- Conflict and View	04
7.	Introduction to NoSQL Overview of NoSQL, characteristics of NoSQL, Storage types of NoSQL, Implementing NoSQL in MongoDB - Managing Databases and Collections from the MongoDB shell, Finding Documents in MongoDB collection from the MongoDB shell.	04
	Total	30

Text Books

- 1. Hennery Korth and Abraham Silberschatz, Database System Concepts, 7th Edition, McGraw Hill, 2019.
- 2. Elmarsi and Navathe, Fundamentals of Database Design, 7th Edition, Addison Wesley, 2019.
- 3. A Phaltankar, J. Ahsan, M. Harrison, L. Nevdov, *MondoDB Fundamental*, Packt Publishing, 2020.

Reference Books

- 1. Bob Bryla, Kevin Loney *Oracle Database 12C The Complete Reference*, 1st Edition, Tata McGraw Hill, 2017.
- 2. Marko Aleksendric, Arek Borucki, Mastering MongoDB 7.0, Packt Publishing, 2024.

Laboratory Work

8 to 10 experiments (and a practicum where applicable) based on the syllabus

Program: B Tech/ MBA Tech (Computer	Semester: IV/III//VIII
Engineering) / B Tech (CSBS, Computer	
Science)	
BTI Computer Engineering	
Course: Theoretical Computer Science	Code:702CO0C011

Teaching Scheme				Evaluation Scheme		
Lecture Hours per week	Practical Hours per week	Tutorial Hours per week	Credit	Internal Continuous Assessment (ICA) (Marks - 50)	Term End Examinations (TEE) (Marks- 100)	
2	0	1	3	Marks Scaled to 50	Marks Scaled to 50	

Pre-requisite: Data Structures

Course Objective

To introduce fundamental principle of automata theory and formal languages. To understand various types of automata and their relationships.

Course Outcomes- After successful completion of the course, student will be able to-

- 1 Understand the concepts of Automata theory and formal language,
- 2. Identify different formal language classes and their relationships,
- 3. Design grammars and recognizers for different formal languages.

Detailed Syllabus						
Unit	Description	Duration				
	Introduction to Automata theory: Basic concepts of	03				
1.	String, Formal languages, Chomsky hierarchy, Grammar					
1.	and its type - Type 0, 1, 2 and 3, Derivation Tree,					
	Application of the subject in complier construction					
	Finite State Machine & Regular Set: Concept of DFA,	08				
	NFA, Epsilon NFA, Converting NFA to Minimized					
2.	DFA, Regular Expressions, DFA to R. E Conversion,					
	Regular language, Closure properties & Pumping					
	Lemma for regular sets					

Signature (Prepared by Concerned Faculty/HOD)

3.	Moore and Mealy machine: Designing of Mealy machine and Moore machine, Conversion from Mealy to Moore and Moore to Mealy	03
	Context Free Grammar: Basic concept of Context Free	05
4.	Grammar and Language, Ambiguous CFG, Simplification	
	of CFG, Chomsky's Normal Form, Griebach Normal Form.	
	Push Down Automata: Tuples and elements in PDM,	05
5.	Design of PDA for CFL, Power of PDA over FSM, Closure	
	Properties of CFL	
6.	Turing Machine: Turing Machine Definition, Examples	06
	of TM designing, Recursive and recursively enumerable,	
	Universal Turing machine, Church Turing Hypothesis,	
	Halting problem, Power of TM over PDA	
	Total	30

Text Books:

- 1. Peter Linz, Narosa, "Introduction to Formal Languages and Automata", 6th Edition, 2016.
- 2. Vivek Kulkarni, "Theory of Computation", Oxford, 1st Edition, 2013.

Reference Books:

- 1. J.E. Hopcroft, J.D. Ullman, Motwani, "Introduction to Automata theory, Languages and Computation", 3rd Edition, Pearson Education, 2008.
- 2. Michael Sipser, Introduction to the Theory of Computation, 3rd edition, Cengage Learning, 2013.

Laboratory/ Tutorial Work

8 to 10 tutorials based on the syllabus.

Signature (Prepared by Concerned Faculty/HOD)

Program: B Tech (Artificial Intelligence, Computer Engineering,	Semester: III/IV/V/VII/VIII/ V-
Information Technology, CSE (Cyber), AI and ML, AI and DS,	VII
CSE (DS), Computer Science)	
MBA Tech (Artificial Intelligence, Computer Engineering,	
Information Technology)	
B Tech Integrated (Computer Engineering, Information	
Technology)	
Course: Web Programming	Code: 702AI0E005

Teaching Scheme				Evaluation	n Scheme
Lecture	Lecture Practical Tutorial		Internal Continuous	Term End	
(Hours per	(Hours per	(Hours per	Credit	Assessment (ICA)	Examinations (TEE)
week)	week)	week)		(Marks - 50)	(Marks - 100)
2	2	0	3	Marks Scaled to 50	Marks Scaled to 50

Prerequisite: Computer Programming

Course Objective

The objective of this course is to develop modern web application by leveraging latest technologies. It helps them to learn new technologies by applying foundation paradigms, building strong expertise to develop end to end application - web frontend and backend development.

Course Outcomes

After completion of the course, students will be able to -

- 1. Explain the fundamentals of web programming
- 2. Design front end of a web application
- 3. Establish database connectivity between front-end and back-end

Detailed Syllabus

Unit	Description	Duration
1.	Introduction Concept of website, its need and purpose, Types of websites: Static and dynamic website, Introduction to HTML, XML, JSON, Web Browsers, – Web Servers, Uniform Resource Locator, Tools and Web Programming Languages, HTTP, Web Standards, Tiered Architecture: Client Server Model, Three Tier Model	02
2.	Hyper Text MarkUp Language Languages used for website development, HTML5: basic tags, formatting tags, Adding images, Lists, Embedding multimedia in Web pages, Inserting tables, Internal and External Linking, Frames, Forms	05
3.	Cascading Style Sheets (CSS3) Basics of Cascading Style sheets, Advantages of CSS, External Style sheet, Internal style sheet, Inline style sheet, CSS Syntax, color, background, Font, images	05
4.	Java Script Features of JavaScript, extension of JavaScript, Syntax of JavaScript: data types, operators, variables, tag, Document Object Model (DOM) with JavaScript, Selection Statement using if and Switch, Iterative statement: for, for/in, while, do while, break and continue, Form Validation using JavaScript.	04

(Head of the Department)

5.	Angular JS Introduction to Angular JS, Single Page Application, Angular features, Expressions, Modules, Directives, Model, controllers, Data bindings, Scopes, Tables, Angular JS Forms and validation, Services, HTTP, Dependency Injection, Events.	08
6.	Node JS Introduction, Modules, HTTP module, URL module, File system, NPM, Events and Event Emitter, Exception handling. MYSQL Database with Node.js Introduction, Express.js, create database, create table, insert, update select, delete, where, order by, drop table.	06
	Total	30

Text Books

- 1. Terry Felke-Morris, Web Development and Design Foundations with HTML5, 9th Edition, Pearson Education, ISBN-10: 9353438829, Nov 2019.
- 2. Julie C. Meloni, Jennifer Kyrnin, *Sams Teach Yourself HTML, CSS, and JavaScript All in One,* 3rd Edition, Pearson Education, ISBN-10: 9389552419, 8th May 2020.
- 3. Greg Lim, Beginning Angular with Typescript, ISBN-13:-978-9811480270, 1st Sep 2020.

Reference Books

- 1. David Herron, Node.js Web Development Fourth Edition: Server-side development with Node 10 made easy, 4th Edition, Packet Publishing, May 2018.
- 2. Joel Murach, *Murach's MySQL*, ISBN 978-1-943872-36-7, Murach Books publishing, Published March 2019.
- 3. Greg Lim, Beginning Angular with Typescript, ISBN:- 9811480273, 1st September 2020.

Laboratory Work

8 to 10 experiments (and a practicum where applicable) based on the syllabus

Program: B Tech/ MBA Tech (Computer Engineering) / B Tech Computer Science/ BTI Computer Engineering	Semester: IV/ VIII
Course: Object Oriented Programming through JAVA	Code: 702CO0C038

Teaching Scheme				Evalua	ntion Scheme
Lecture Hours per week	Practical Hours per week	Tutorial Hours per week	Credit	Internal Continuous Assessment (ICA) (Marks - 50)	Term End Examinations (Marks- 50)
0	2	0	1	Marks Scaled to 50	Marks Scaled to 50

Pre-requisite: Programming for Problem Solving

Course Objective

To develop the abilities for object-oriented programming using Java, to gain knowledge of the basic data structures supported by Java, concepts of object-oriented programming, exception handling, graphical user interface and collection framework in Java.

Course Outcomes: After successful completion of this course, student will be able to -

- 1. Understand java programming fundamentals
- 2. Write program using object-oriented programming concepts
- 3. Use exception handling and collection framework in Java
- 4. Design graphical user interface

Detailed Syllabus:

Unit	Description	Duration
	Introduction to object-oriented programming	02
1.	Features of object-oriented programming, datatypes,	
	variables, literals, operators, constants, identifiers.	
2	Control Statements	02
2.	selection statements, Iterations, Jump statements.	
	OOP's concept	07
3.	Class, methods, objects, constructor, polymorphism-method	
3.	overloading, encapsulation, access modifiers, packages,	
	introduction to string & string buffer.	
	Inheritance in Object Oriented design	07
4.	Types of inheritance, method overriding, abstraction-	
	abstract class, abstract method, Introduction to interfaces,	
	implementing interface, keywords-super, final. JS3 pages.	
5.	Exception handling	02

(Prepared by Concerned Faculty/HOD)

	What is exception handling, Difference between exception and error, try, catch, finally, throw, throws, finally.	
6.	Spring MVC Architecture using spring, Containers- JFrame, JApplet, JWindow, JDialog, JPanel, Controlling Layout, Event Handling.	06
7.	Collection Framework Overview The Collection Interfaces-List interface, set interfaces, The Collection Class- The Array List, The Linked List, accessing a collection- using an Iterator and For-each loop.	04
	Total	30

Text Books:

- 1. R. Nageswara Rao, Core Java: An Integrated Approach, New: Includes All Versions upto Java
- 8, Dreamtech Press ,1st January 2016.

Reference books

- 1. E Balaguruswamy, *Programming with Java*, 6th edition, Tata McGraw Hill,2019.
- 2. Herbert Schildt, Java The Complete Reference Eleventh Edition, McGraw Hill, 11th edition.

Laboratory / Tutorial work

8 to 10 experiments (and a practicum where applicable) based on the syllabus.

Jan.

Program: B Tech / MBA Tech (Computer	Semester: IV /VIII
Engineering)	
BTI Computer Engineering	
Course: Microprocessor and Microcontroller	Code-702CO0C009

Teaching Scheme				Evaluation Scheme	
Lecture Hours per week	Practical Hours per week	Tutorial Hours per week	Credit	Internal Continuous Assessment (ICA) (Marks - 50)	Term End Examinations (TEE) (Marks- 100)
3	2	0	4	Marks Scaled to 50	Marks Scaled to 50

Pre-requisite: Digital Logic Design, Computer Organization and Architecture

Course Objective

Introduction on architecture of 8086 and 8051. To cover different instruction set and addressing modes in 8086 and 8051 to develop programs for desired microprocessor and microcontroller

Course Outcomes- After successful completion of this course, student will be able to

- 1. Understand the architectural design of 8086 along with its features,
- 2. Design Interfacing of 8085 with peripherals and develop programs for 8086,
- 3. Analyze the architectural design of 8051 and develop programs for 8051 using instruction set,
- 4. Understand the key features of advanced microcontroller and microprocessor.

Detailed Syllabus:

Unit	Description	Duration
1.	Intel 8086/8088 microprocessor family: Feature of 8086 Architecture and programming model of 8086, Microprocessor family Latches 8282, clock generator 8284, Transceiver 8286. Min and Max Mode Timing diagram of 8086, 8288 bus controller.	08
2.	Programming of 8086: Introduction, Addressing Modes, Instruction sets of 8086, Assembly language programming, Assembler Directive, Passing parameter to Procedure and Macro.	06
3.	8086 Interrupt Structure: Instruction, Hardware software and program generated interrupts in 8086. Response to interrupt, Interrupt vector	06

Signature

(Prepared by Concerned Faculty/HOD)

	Table, Interrupt acknowledge machine cycle, 8259 PCI, EOI,	
	and interfacing with 8086.	
	8087 Math Co-processor:	05
4.	Study of architecture of 8087, architecture of NIC	
	architecture of 8087. Data type Supported by 8087.	
	Introduction and Hardware of 8051 Microcontrollers:	08
	Comparison of microprocessor and microcontroller,	
5.	architecture and pin functions of 8051 chip controller, CPU	
٥.	timing and machine cycles, internal memory Organization,	
	program counter and stack, input/output ports, counters and	
	timers, Serial data input and output interrupts	
	8051 Assemble language programming:	07
	Introduction to 8051 Assembly programming, Data Types	
	and directives, 8051 flag bits an PSW register. Register banks	
6.	and stack. Jump loop and call instructions, I/O Port	
0.	Programming: Addressing modes and accessing memory	
	using various addressing modes. Arithmetic instructions and	
	programs, Logic instructions and programs, Timer/counters	
	of 8051	
	Introduction to Advanced Microprocessor and	05
	Microcontrollers:	
7.	Introduction to Arduino-features, types, basic Architecture	
	Overview on advanced processor and controller used in	
	Industry	
	Total	45

Text Books:

- 1. Badri Ram, "Advanced Microprocessors and Interfacing", 3rd Edition, Tata McGraw Hill Publication, 2018.
- 2.Muhammad Ali Mazidi, "Microcontroller & Embedded system", 2nd Edition, Prentice Hall publication, 2011.

Reference Books:

- 1. Douglas Hall, "Microprocessors Interfacing and Programming", Tata McGraw Hill publication, 2017.
- 2. Raj Kamal, "Microcontrollers-architecture, programming, Interfacing and system design", 2nd Edition, Pearson publication, 2012.

Laboratory/ Tutorial Work

8 to 10 experiments (and a practicum where applicable) based on the syllabus

Som

Signature

(Prepared by Concerned Faculty/HOD)