SVKM's NMIMS Mukesh Patel School of Technology Management & Engineering

Program: B. Tech /MBA Tech (Computer Engineering, EXTC)					Semester: V/ V	I	
Course: Artificial Intelligence					Module Code: 702CO0C032		
Teaching	Scheme			Evalu	ation Scheme		
Lecture (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit		nal Continuous sment (ICA) ss -50)	Term End Examinations (TEE) (Marks -100)	
2	2	0	3	Mar	ks Scaled to 50	Marks Scaled to 50	

Prerequisite: Data Structure and Algorithms, Programming for Problem Solving.

Course Objective

To impart knowledge of the fundamental theories, methods and techniques in the field of Artificial Intelligence and to design and develop AI systems.

Course Outcomes

After completion of the course, students will be able to -

- 1. Explain agents and environment in AI
- 2. Apply various heuristic and searching strategies to solve problems in the AI domain
- 3. Design knowledge base using expert systems and game playing
- 4. Implement supervised and unsupervised learning approaches to solve problems in the AI domain

Detailed Syllabus

Unit	Description	Duration							
1	Introduction to Artificial Intelligence	04							
	Definitions of AI, Applications of Artificial Intelligence,								
	Concept of Modeling, Inference and Learning.								
	Introduction to Machine learning and Deep learning as a								
	subset of AI. Intelligent agents, concept of rationality,								
	structure of agents, Environment, Properties of task								
	environment. Real world Examples of agents and								
	environments.								
2	Solving problems by Searching	07							
	Problem solving agents, searching for solutions.								
	Uninformed Search: Breadth first search, Depth first								
	search, Uniform cost search Informed Search: Informed								
	search strategies, Greedy Best First Search, A* search, Hill								
	climbing, problems with hill climbing such as Local								
	Maxima, Plateau, Ridge, Genetic Algorithm. Adversarial								

SVKM's NMIMS Mukesh Patel School of Technology Management & Engineering

	Search: Introduction to the Domain of a game, optimal	
	decisions in games, minimax algorithm, Alpha-beta	
	pruning.	
3	Knowledge Representation	06
	Propositional logic, Theory of first order logic, Inference	
	in First order logic, Forward & Backward chaining,	
	Resolution.	
4	Constraint satisfaction Problem (CSP)	05
	Constraint satisfaction problems, Backtracking search for	
	CSPs, variables and value ordering, propagating	
	information through constraints, Intelligent	
	backtracking, Local search for CSP. Case study on CSP.	
5	Learning	05
	Inductive learning, Types of learning, supervised -	
	decision trees classification, unsupervised learning - K-	
	means clustering.	
6	Expert system	03
	Definition, model, characteristics, architecture,	
	development process, limitations, examples of expert	
	systems.	
	Total	30
1		

Text Books

- 1. Stuart Russel and Peter Norvig, *Artificial Intelligence: A Modern Approach*, 4th edition, 2021, Pearson.
- 2. Dan W. Patterson, *Introduction to Artificial Intelligence and Expert System*, Pearson, 2015.

Reference Books

- 1. Elaine Rich, Kevin Knight, *Artificial Intelligence*, 3rd edition, Tata Mc-Graw Hill, 2015.
- 2. Patrick H. Winston, Artificial Intelligence, 3rd edition, Pearson, 2002.

Laboratory Work

Program: B Tech/MBA Tech Information Technology, B					Semeste	r: VI, VII,VIII
Tech/MBA 7	Tech (Comp	uter Engine	eering), B	Гесh Artificial		
Intelligence, I	3 Tech EXTC	, MBA Tech	i EXTC, B T	ech Computer		
Science, B Ted	ch AI and M	L, B Tech A	I and DS			
Course: Cloud Computing				Code: 70	02IT0C026	
Teaching Scheme F				Evaluatio	n Scheme	
Lecture (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	edit Assessment (ICA) Examin		Term End Examinations (TEE) (Marks- 100)
2	2	0	3	Marks Scale	d to 50	Marks Scaled to 50

Pre-requisite: Computer Networks

Course Objective

The course is designed to enable students to understand state-of-the-art cloud computing technologies and applications. This course covers basic models, architecture, virtualisation. It also delves into concepts, processes and best practices needed to secure cloud information. It emphasises on business models, risk management and service management aspects of cloud.

Course Outcomes

After completion of the course, student would be able to-

- 1. Classify the layers of cloud reference model based on their significance
- 2. Address security concerns and orchestration in cloud environment

Detail	Detailed Syllabus							
Unit	Description	Duration						
1	Introduction to Cloud Essential Characteristics of Cloud, Cloud Service Models, Cloud Deployment Models, Cloud Service Brokerage, Cloud Reference Model, Considerations for building Cloud Infrastructure	5						
2	Physical Layer Compute System, Storage System Architecture, Network Connectivity	5						
3	Virtual Layer Virtual Layer Functions, Virtualization Software, Resource Pool and Virtual Resources	5						
4	Control Layer Control Layer Functions, Control Software, Resource Optimization Techniques	5						
5	Cloud Security Threats, Security Mechanisms, IAM solutions, Security Algorithms	5						
6	Orchestration Container Approach, Docker Container, Items in a Dockerfile, Kubernetes Pods, Kubernetes Terminology, Kubernetes Cluster Model, Kubernetes Features	5						
	Total	30						

Text Books

- 1. Douglas E. Comer, *The Cloud Computing Book: The Future of Computing Explained*, 1st Edition, Taylor and Francis, 2021
- 2. Tim Mather, Security and Privacy Trends in Cloud Computing and Big Data, 1st Edition, Taylor and Francis, 2022.

Reference Books

- 1. Umang Singh, San Murugesan and Ashish Seth, *Emerging Computing Paradigms Principles, Advances and Applications*, Wiley India, 2022.
- 2. Sanjiva Shankar Dubey, *Cloud Computing and Beyond: A Managerial Perspective*, 2nd Edition, Wiley, 2021.
- 3. John R. Vacca, *Cloud Computing Security Foundations and Challenges*, 2nd Edition, CRC Press, 2021.
- 4. Brij Gupta, Gregorio M, Dharma P Agarwal and Deepak Gupta, *Handbook of Computer Networks and Cyber Security*, 1st Edition, Springer, 2020.

Laboratory Work

8 to 10 Programming exercises based on the syllabus.

(Head of the Department)

SVKM's NMIMS University Mukesh Patel School of Technology Management and Engineering

Program: B Tech / MBA Tech (Computer Engineering, Information Technology, Artificial Intelligence)					Semest	er: VI /VII /V
B Tech Computer Science						
Course: D	istributed (Computing	5		Code:70	02CO0C034
Teaching Scheme				Evalua	tion Scheme	
Lecture (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	·		Term End Examinations (TEE) (Marks - 100)
2	2	0	3	Marks Scaled	to 50	Marks Scaled to 50

Prerequisite: Operating Systems

Course Objective

To introduce the concepts and design of distributed computing and algorithms that support distributed computing.

Course Outcomes

After completion of the course, student will be able to -

- 1. Explain the basic concepts of distributed computing
- 2. Apply the concepts of distributed computing to implement various mechanisms of communication
- 3. Analyze various approaches of synchronization, mutual exclusion, election algorithms and fault tolerant services
- 4. Recognize different kinds of naming and their implementation

Detail	Detailed Syllabus						
Unit	Description	Duration					
1	Introduction to Distributed System	05					
	Definition, Goals, Examples of Distributed System-Internet.						
	System architectures-centralized architecture, decentralized						
	architecture, hybrid architecture, Client-Server Model, Servers-						
	general design issues, server clusters, managing server clusters.						
2	Communication	06					
	Basic RPC operation, RPC implementation, RPC semantics in						
	presence of failures, RMI- Basics, Implementation, Case study-						
	Java RMI, Message oriented communication-: transient and						

Mukesh Patel School of Technology Management and Engineering

	persistent communication.	
	Stream oriented communication- support for continuous media,	
	streams and QoS, stream synchronization.	
3	Synchronization	06
	Introduction, Physical Clock synchronization algorithms,	
	Logical clocks, event ordering, implementation of Logical	
	clocks, Lamport's logical clock algorithm, Vector clocks, Mutual	
	exclusion: Centralized, distributed and token ring mutual	
	exclusion algorithms, comparison of these algorithms.	
	Traditional election algorithm- Bully and Ring election	
	algorithm.	
4	Fault Tolerance	08
	Introduction, Process resilience, Reliable group communication.	
5	Naming	05
	Names, identifiers, and addresses, Flat naming , Structured	
	naming: name spaces and resolution, implementation of name	
	space, Case study- Domain Name System, Attributed based	
	naming- Directory services.	
	Total	30

Text Books

1. Andrew S. Tanenbaum, *Distributed System: Principles and Paradigms*, 3rd Edition, Pearson Prentice Hall, 2017.

Reference Books

- 1. George Couloris, *Distributed System: Concept and Design*, 5th edition, Pearson Education, 2009.
- 2. Pradeep K. Sinha, *Distributed Operating System*, IEEE Press, Prentice Hall of India Ltd, 1998.
- 3. Mei-Ling L. Liu, *Distributed Computing: Principles and Applications*, Addison Wesley, 2004.

Laboratory / Tutorial work:

Program: B	Tech Compu	Sen	ester: VI			
Course: E-0	Commerce	Coc	Code: 702IT0E027			
Teaching Scheme				Evaluation Scheme		
Lecture (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	Internal Continuous Assessment (ICA) (Marks - 50)	Term End Examinations (TEE) (Marks- 100)	
2	2	0	3	Marks Scaled to 50	Marks Scaled to 50	

Pre-requisite: Computer Networks

Course Objective

To provide principles of Electronic Commerce from a technical and business perspective

Course Outcomes

After completion of the course, the student will be able to -

- 1. Classify and Compare different Electronic Commerce Software and Online Payments methods
- 2. Explain various E-Commerce Legal, ethical, social issues and Security issues
- 3. Use modern engineering tool for developing effective model of E-Commerce web applications

Detail	Detailed Syllabus							
Unit	Description	Duration						
1	Introduction Evolution Of Commerce, Business Models, Revenue Models, and Business Processes, Role of Merchandising, Product/Process Suitability to Electronic Commerce, Advantages and Disadvantages of Electronic Commerce Economic Forces and Electronic Commerce, Transaction Costs Markets and Hierarchies, Using Electronic Commerce to Reduce Transaction Costs, Identifying Electronic Commerce Opportunities, Strategic Business Unit Value Chains, Industry Value Chains, SWOT Analysis: Evaluating Business Unit Opportunities, International Nature of Electronic Commerce, Infrastructure and tools for e- commerce, current trends in e-commerce applications development.	6						
2	Electronic Data Interchange and Electronic Commerce Software Early Business Information Interchange Efforts Emergence of Broader EDI Standards How EDI Works Value-Added Networks EDI Payments EDI on the Internet Supply Chain Management Using Internet Technologies Value Creation in the Supply Chain Increasing Supply Chain Efficiencies Electronic Commerce Software for Midsize to Large Businesses. Electronic Commerce Software for Small and Midsize Companies. Electronic Commerce Software for Large Businesses Enterprise-Class Electronic Commerce Software Customer Relationship Management Software Supply Chain Management Software	8						

	Content Management Software Knowledge Management Software	
3	Electronic and Online Payments Overview, Payment Gateway, Certificates, Digital Token, Smart Cards, Credit Cards, Magnetic Strip Cards, E Checks, Credit/ Debit Card EPS, Online Payments: Mobile Payments, Online Banking, Emerging Financial Instruments - Application in Business, E- Commerce Laws, Forms of Agreement, Government Policies and Agenda.	6
4	Legal, ethical and social issues The Legal Environment of Electronic Commerce Borders and Jurisdiction Jurisdiction on the Internet Conflict of Laws Contracting and Contract Enforcement in Electronic Commerce Use and Protection of Intellectual Property in Online Business Copyright Issues Patent Issues Trademark Issues Domain Names and Intellectual Property Issues Protecting Intellectual Property Online Defamation Online Crime, Terrorism, and Warfare Online Crime Online Warfare and Terrorism	4
5	Electronic Commerce Security Security for Client Computers Cookies ,Web Bugs ,Active Content ,Java Applets ,JavaScript ActiveX Controls ,Graphics and Plug-Ins ,Viruses, Worms, and Antivirus Software ,Digital Certificates ,Steganography Communication Channel Security Secrecy Threats Integrity Threats Necessity Threats Threats to the Physical Security of Internet Communications Channels Threats to Wireless Networks ,Firewalls Security for Server Computers Web Server Threats Database Threats	6
	Dambase Titeats	

1. Gary P. Schneider, Electronic Commerce, 12th Edition, Cengage Learning, 2016.

Reference Books

- 1. Henry Chan, Raymond Lee, Tharam Dillon and Elizabeth Chang, *E Commerce-Fundamentals and application*, 1st Edition, John Wiley & Sons, 2015.
- 2. M. L. Brodie and Dieter Fensel, *Ontologies: A Silver Bullet for Knowledge Management and Ecommerce*, 2nd Edition, Springer, 2004.

Laboratory Work

8 to 10 Programming exercises based on the syllabus.

SVKM's NMIMS University Mukesh Patel School of Technology Management and Engineering

Program: B Tech/MBA Tech Computer Engineering	Semester: VI/ V
B Tech Computer Science	
B Tech/MBA Tech Information Technology	
Course: Human Computer Interaction	Code: 702CO0E007

Teaching Scheme				Evaluation Scheme		
Lecture (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	Internal Continuous Assessment (ICA) (Marks- 50)	Term End Examinations (TEE) (Marks-100)	
2	2	0	3	Marks Scaled to 50	Marks Scaled to 50	

Prerequisite: Software Engineering

Course Objectives

This course gives an introduction to Human Computer Interface and provides an understanding of user centered design process. It will help students to design and evaluate interactive systems keeping users in mind.

Course Outcomes

After completion of the course, students will be able to -

- 1. Discuss the importance of good interface design for human computer interaction
- 2. Apply design principles, models and evaluation techniques to user interface design
- 3. Identify various aspects of user experience and design thinking in HCI
- 4. Design user interface application using HCI concept

Detailed Syllabus

Unit	Description	Duration
1	Introduction	04
	Introduction to HCI, Importance of good interface design,	
	Notions- Human, Computer & Interaction. Multi-disciplinary	
	Applications of HCI.	
2	Design Process & Interaction	05
	Introduction of design, Types of design: User-centered design,	
	Participatory design, Scenario based design,	
	Interaction design basics, users & persona, scenario	
3	Design Rules	06
	Cognitive psychology - Visual perception, Ergonomics, Memory	
	Models, Shneiderman's design rules, Norman's 7 principles for	
	designing	
4	HCI Models	03
	GOMS model, Hierarchical Task Analysis	

Mukesh Patel School of Technology Management and Engineering

5	Evaluation Techniques in HCI	06				
	Need of evaluation in interface designing, introduction to					
	quantitative and qualitative research methods in designing, Types					
	of evaluation techniques- Heuristics evaluation model,					
	Experimental evaluation model.					
6	User Experience	04				
	Basic understanding of UX in HCI, Role of UI and UX in HCI					
	designing, Elements of UX					
7	Designing for Emerging Technologies	02				
	Voice based UI, designing for wearables.					
	Total	30				

Text Books

- 1. Helen Sharp, Jennifer Preece, Yvonne Rogers *Interaction Design: Beyond Human-Computer Interaction*, 5th Edition, Wiley Publication, 2019.
- 2. Alan Dix, Janet Finlay, Gregory Abowd, Russel Beale, *Human–Computer Interaction*, 4th Edition, Pearson Education, 2009.

Reference Books

- 1. Ben Shneiderman, Designing the User Interface: Strategies for Effective Human-Computer Interaction, 3rd Edition, Pearson Education, 2014.
- 2. Follett Jonathan (Ed), *Designing for Emerging Technologies*, 1st Edition, O'Reilly, 2014.
- 3. Levy Jaime, *UX Strategy: How to Devise Innovative Digital Products that People Want*, 1st Edition, O'Reilly, 2015.

Laboratory Work:

SVKM's NMIMS Deemed-to-be University Mukesh Patel School of Technology Management and Engineering

Program: B Tech All Program [except CSBS and CSE(DS) 311 (VT)]				SE(DS) 311 (VT)] S	emester: VI / X
MBA Tech All Program, B Tech Integrated Civil					
Course: Interpersonal Skills					Code: 702BS0C063
Teaching Scheme Ev			Eval	luation Scheme	
Lecture	Practical (Hours	Tutorial (Hours	Credit	Internal Continuous Assessment (ICA)	Term End Examinations (TEE)
(Hours per week)	per week)	per week)		(Marks - 50)	
0	2	0	1	Marks Scaled to 50	-
Due ne serieite. N	:1		•	•	_

Pre-requisite: Nil

Course Objective

The course aims to build and enhance skills critical to future employability through a medley of activities and simulation practices. Also vital skills like persuasion, team participation, self-branding and workplace communications are developed through this course

Course Outcomes

After completion of the course, students will be able to -

- 1. Demonstrate awareness of business networks and communicate appropriately in various contexts
- 2. Illustrate the knowledge of team dynamics to work productively in teams and participate effectively in contexts such as group discussions
- 3. Apply persuasive communication strategies to articulate themselves in situations such as personal interviews
- 4. Create social media plans and employment related documents to showcase their personal brand

Detailed Syllabus Unit Description **Duration** 1. **Corporate Communication** Workplace hierarchy and importance of Formal and Informal Networks, Cross 06 cultural communication, Business etiquette and netiquette, Corporate presentationssales and elevator pitch, advanced features in Power-Point (zoom, morph), data and non data driven graphics in presentations **Group and Team Dynamics** 2. 08 Group Discussions(GD) - speaking in GDs, discussing problems and solutions, creating a cordial and cooperative atmosphere, using persuasive strategies, being

polite and firm, turn-taking strategies, effective intervention, reaching a decision,

Pate/ SCOOP SVKM'S NMIMS NMIMS 56 **

(Prepared by Corned Faculty/HOD)

SVKM's NMIMS Deemed-to-be University Mukesh Patel School of Technology Management and Engineering

	Organizational GD, GD as part of selection process: characteristics, evaluation and analysis Dynamics of group formation, the dysfunctions of groups and teams: norm violation and role ambiguity, groupthink and group-polarization, team building exercises	
3.	Employment Communication Self-branding through social media, resume-traditional and non-traditional formats- scannable, video portfolios, visual, etc.; cover letters-solicited and unsolicited	08
4.	Personal Interviews Virtual hiring practices; stages of interview: face-to-face interviews: causes of failure in an interview, types of interview questions, mock interviews	08
	Total	30

Text Books

- 1. Meenakshi Raman and Sangeeta Sharma, *Technical Communication: Principles and Practices*, 3rd ed., Oxford University Press, 2015
- 2. Fred Luthans, Organisation Behaviour: An Evidence Based Approach, 12th ed. McGraw Hill, 2013

Reference Books

- 1. Frances Trought, Brilliant Employability Skills, 2nd ed. Pearson, 2017.
- 2. S P Robbins, Timothy A Judge and Neharika Vohra, Organizational Behavior, 15th ed., Pearson, 2013
- 3. Scot Ober and Newman Amy, *Contemporary Business Communication*, 8th ed., Biztantra Publications, 2017
- 4. Cliff Atkinson, Beyond Bullet Points, 4th ed., Pearson Education, 2018

Laboratory Work

8 to 10 Practical activities based on the syllabus

(Prepared by Corned Faculty/HOD)

SVKM's NMIMS University Mukesh Patel School of Technology Management and Engineering

Program: B Tech / MBA Tech Computer Engineering	Semester: VII
B Tech (CSBS, AIDS, Computer Science)	VII /VI
Course: IoT and Applications	Code: 702CO0E017

	Teachi	ng Scheme		Evaluation Scheme	
Lecture (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	Internal Continuous Assessment (ICA) (Marks - 50)	Term End Examinations (TEE) (Marks- 100)
2	2	0	3	Marks Scaled to 50	Marks Scaled to 50

Prerequisite

C/ C++ Programming, Microprocessor and microcontroller, Computer Networks, Cyber Security.

Course Objective

The course educates students on the basic concepts of the internet of things. This course also covers technologies, components, processes and mechanisms of the internet of things to develop the complete application.

Course Outcomes

After completion of the course, students will be able to:

- 1. Describe the fundamentals of IoT and M2M,
- 2. Identify various IoT access technologies,
- 3. Analyze security and privacy issues in IoT,
- 4. Develop and implement IoT applications.

Detailed Syllabus:

Unit	Description	Duration
1.	Fundamentals of IoT	07
	Definition, characteristics and reliability issues & solutions of IoT, Evolution of Internet	
	of Things, IoT architectures, Resource management, IoT data management and	
	analytics, communication protocols, IoT applications, security and privacy, Identity	
	management and authentication, standardization and regulatory limitations.	
2.	IoT and M2M	02
	Introduction, M2M - Machine to Machine, difference between IoT and M2M, software	
	defined networking and network function virtualization.	
3.	IoT protocols	06
	Networking Protocols: 6LowPan, RPL, Thread, IoT Devices Application-Level	
	Protocols: MQTT, CoAP, REST.	

Signature

Mukesh Patel School of Technology Management and Engineering

4.	Security and Privacy in the IoT	06				
	IoT reference model, security threats and requirements, IoT security overview, Security					
	frameworks for IoT, Privacy in IoT networks, obfuscation and diversification for					
	securing IoT.					
5.	Designing of IoT systems	04				
	Design principles for connected devices, IoT design methodology, prototyping,					
	business models.					
6.	IoT Applications	05				
	Home automation, Cities, Environment, Energy, Retail, Logistics, Agriculture,					
	Industry, Health & Lifestyle.					
	Total	30				

Text Books

- 1. Vijay Madisetti and Arshdeep Bahga, "Internet of Things (A Hands-on-Approach)", 1st Edition, VPT, 2014 (classic).
- 2. Rajkumar Buyya and Amir Vahid Dastjerdi, "Internet of Things Principles and Paradigms", Morgan Kaufmann publications, 2016.

Reference Books

1. Adrian McEwen and Hakim Cassimally, "Designing the Internet of Things", Wiley publications, 2014.

Laboratory Work

Mukesh Patel School of Technology Management and Engineering

Program: B. Tech/MBA Tech (Computer Engineering) Semester: VI					
B Tech (Computer Science, AIDS)					
Course: Microservices and Architecture	Code: 702CO0E010				

Teaching Scheme				Evaluation	Scheme
Lecture (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	Internal Continuous Assessment (ICA) (Marks - 50)	Term End Examinations (TEE) (Marks-100)
2	2	0	3	Marks Scaled to 50	Marks Scaled to 50

Pre-requisite: Object-Oriented Programming, Java Programming, Web Technologies

Course Objective

This course helps students to gain in-depth knowledge of Microservice-Based System Architecture. Students will gain knowledge to develop a Microservice for real-life scenario

Course Outcomes

After completion of the course, student will be able to

- 1. Explain the concepts of Microservices and its architecture
- 2. Design, develop and test Microservices using Spring Boot
- 3. Understand the concepts of Microservices governance, security and migration

Detailed Syllabus

Unit	Description	Duration
1	Microservice Evolution	02
	Introduction to Microservices, Monolithic Architecture,	
	Limitation of Monolithic, Service Oriented Architecture,	
	Web Services, Need for Microservices Architecture,	
	comparing the Microservice Architecture with SOA,	
	features of MSA, Applications of MSA.	

SVKM's NMIMS University Mukesh Patel School of Technology Management and Engineering

	Mukesh Fater School of Technology Management and Engin	
2	Microservice Architecture	02
	Overview of Microservice architectural styles, Design	
	Principles of Microservices, Communication models for	
	Microservices, Synchronous and Asynchronous	
	communication, Microservice Transaction Management.	
3	Introduction to Spring Boot	02
	Introduction to Spring Boot Framework, Overview of	
	Spring Cloud Prerequisite of Spring Boot, Spring boot	
	features, Spring Boot Architecture, Installation and	
	configuration, Creating Spring boot project, Project	
	Components.	
4	Design and Development of Microservices	04
	Microservices and Domain-Driven Design, Microservice	
	Boundaries, Microservices Design Patterns- Decomposition	
	patterns, Integration patterns, Database patterns,	
	Observability Patterns, Cross-cutting concern Patterns.	
5	Building Microservices with Spring Boot	04
	Setting up a development environment, Introduction to	
	HTTP, REST and REST principles, Using Spring Boot to	
	build RESTful Microservices, Getting started with Spring	
	Boot, Developing the Spring Boot Java Microservices using	
	STS, The Spring Boot configuration, Spring Repository.	
6	Database Management in MSA	05
	The Spring Data JPA using Spring boot ,Monolithic	
	application and shared database, Database per	
	Microservice, Sharing data between Microservices, CQRS,	
	Transaction with Microservices- Avoiding Distributed	
	transactions with Two-Phase Commit, Database log mining,	
	Event sourcing, Saga.	
7	Integrating Microservices	03
	Microservices Integration Patterns, requirements of	
L	I	

Mukesh Patel School of Technology Management and Engineering

	Total	30
10	Basic security requirements, JWT and OAuth Implementation using Spring Boot Security. MSA Migration-Advantages, issues, process, disadvantages.	
10	Microservices with Docker, container orchestration, Microservices deployment patterns. Microservices Security and migration	02
9	Deploying and Running Microservices Introduction to Docker and CI/CD pipeline , Deploying	03
8	Microservices Testing & Registry Need of testing, types of testing, testing of overall system, Testing individual Microservices, Service Registry and Discovery, Service registry and discovery using spring boot, API Gateway and Config Server.	03
	integration services, Introduction to Service orchestration using Kubernetes, Service integration using Spring Boot.	

Text Books

- 1. <u>Kasun Indrasiri, Prabath Siriwardena</u>, Microservices for the Enterprise Designing, Developing, and Deploying, 1st Edition, Apress, 2018.
- 2. <u>Sourabh Sharma</u>, Mastering Microservices with Java Build Enterprise Microservices with Spring Boot 2.0, Spring Cloud, and Angular, 3rd Edition, Packt Publishing, 2019.

Reference Books

- 1. <u>Chellammal Surianarayanan, Gopinath Ganapathy, Raj Pethuru, Essentials of Microservices Architecture: Paradigms, Applications, and Techniques, 1st Edition, CRC Press, 2019.</u>
- 2. <u>Magnus Larsson</u>, Hands-On Microservices with Spring Boot and Spring Cloud, 1st Edition, Packt Publishing, 2019.
- 3. Chris Richardson, *Microservices Patterns With examples in Java*, 1st Edition, Manning, 2018.
- 4. Eberhard Wolff, *Microservices A practical guide Principles, Concepts, and Recipes*, 2nd edition, Impressum, 2018.
- 5. <u>Irakli Nadareishvili, Ronnie Mitra, Matt McLarty, Mike Amundsen, Microservices Architecture: Aligning Principles, Practice and Culture, 1st Edition, O'reilly, 2016.</u>

Mukesh Patel School of Technology Management and Engineering

- 6. Eberhard Wolff, *Microservices Flexible Software Architecture*, 1st Edition, Pearson Education, 2016.
- 7. <u>Sam Newman</u>, Building Microservices Designing fine-grained systems, 1st Edition, O'reilly, 2015.

Laboratory / Tutorial work

Program: B Tech / MBA Tech IT and Computer Engineering /			Semester : VI			
B Tech Co	omputer Sci	ence				
Course: Software Quality Assurance			ince		Code: 702IT0E022	
Teaching Scheme				Evaluation Scheme		
Lecture (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	Internal Continuo Assessment (ICA (Marks - 50)		

Prerequisite: Software Engineering, Object Oriented Analysis & Design

Course Objective

2

To understand software quality management process and quality management models. To learn software quality metrics, assurance and various software standards

Marks Scaled to 50

Course Outcomes

After completion of this course, student will be able to-

- 1. Classify the various software quality factors
- 2. Describe and comprehend SQA architecture and its components
- 3. Identify the different software defects and techniques used for defects removal
- 4. Evaluate on the basis of Software quality metrics and the standards

Detailed Syllabus

Unit	Description	Duration
1	Introduction Software quality challenge, software errors, faults and failures, causes of software errors, software quality and software quality assurance definition.	3
2	Software quality factors Need for software quality requirements, classification of software requirements into software quality factors, product operation, revision and transition software quality factors, alternative models of software quality factors, software compliance with quality factor.	4
3	Components of SQA SQA system architecture, pre project software quality components, software project lifecycle components, infrastructure components for error prevention and improvement, Management SQA components, SQA standards, system certification and assessment components, human component.	4
4	Defect removal effectiveness Software development methodologies, factors affecting QA activities in development process, Verification, validation and qualification, model for SQA defect removal effectiveness and cost, reviews.	4
5	Software testing Definition and objectives, testing process, strategies, software test classification, black box and white box, test case design, automated testing, Alpha and Beta site testing programs, Security Testing	4

Marks Scaled to 50

6	Maintenance and external participants Pre maintenance software quality components, Maintenance software quality assurance tools, types of external participants, risks and benefits, assuring quality of external participants, SQA tools for assuring quality of external participants Contribution.	5
7	Standards Scope of quality management standards, ISO 9001, ISO 9000-3, CMM and CMMI, Boot strap methodology, ISO/IEC 15504 model, ISO/IEC 27001 IEEE STD 12207, IEEE STD 1012, IEEE STD 1028.	3
8	Software quality metrics Objective and classification of software quality metrics, process metrics and product metrics, implementation and limitation of software quality metrics.	3
	Total	30

Text Books

1. Daniel Galin, Software Quality Assurance: From Theory to Implementation, 2nd Edition, Pearson Education, 2012.

Reference Books

- 1. Milind Limaye, Software quality assurance, Tata McGraw-Hill Education, 2011.
- 2 Gordon Schulmeyer, Handbook of Software Quality Assurance. 4th Edition, Artech House, 2008.

Laboratory Work

8 to 10 experiments Programming exercises based on the syllabus.

(Head of the Department)

SVKM's NMIMS Mukesh Patel School of Technology Management & Engineering

Program: B Tech (Computer Engineering, Computer	Semester: V/VI
Science, AI and ML)	
MBA Tech (Computer Engineering)	
Course: Cyber Security	Code: 702AI0E004

Teaching Scheme			Evaluation Scheme		
Lecture (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	Internal Continuous Assessment (ICA) (Marks - 50)	Term End Examinations (TEE) (Marks - 100)
2	2	0	3	Marks Scaled to 50	Marks Scaled to 50

Prerequisite: Computer Programming

Course Objective

This course is an introduction to the field of Cyber Security. This course presents a balance of the managerial and technical aspects of the discipline. It will prepare students with the technical knowledge and skills needed to protect and defend computer systems and networks.

Course Outcomes

After completion of the course, students will be able to -

- 1. Explain the basics of cyber security.
- 2. Implement mechanisms of cryptography, authentication and access controls.
- 3. Differentiate security mechanisms in programs and networks.
- 4. Describe risk management related to computer security.

Detailed Syllabus

Unit	Description	Duration
1	Introduction	03
	Basic components of computer security (CIA), characteristics of	
	information, vulnerabilities, threats, attacks and controls, classifications	
	of hackers.	
2	Cryptography	07
	Cryptographic basics, transposition cipher, substitution cipher, block	
	and stream cipher steganography, public v/s private key encryption,	
	Private key encryption: DES, Public key encryption: RSA, Key	
	management, Key exchange - Diffie-Hellman, Digital Signature, One-	
	way hash functions.	
3	Authentication	03
	Authentication basics, Password, Challenge response, Biometrics.	
4	Access Control	03
	Access control principles, ACL, DAC, MAC, and Role based Access	
	Control, Access control models, Kerberos.	
5	Program Security	04

Signature
(Head of the Department)

SVKM's NMIMS Mukesh Patel School of Technology Management & Engineering

	Secure programs, non-malicious Program Errors, Viruses and other	
	malicious code, types of viruses, attack mechanism of viruses, Targeted	
	Malicious Code, Controls Against Program Threats.	
6	Network Security	06
	Eavesdropping, spoofing, denial of service attacks, Security controls:	
	encryption, virtual private networks, SSL, Firewall: Kinds of Firewalls,	
	Filtering Services, DMZ, IDS and its types of IDS.	
7	Risk Management	04
	Risk analysis, various terminologies associated with risk management,	
	Risk assessment techniques, managing risk, steps for risk management,	
	Business impact analysis, various terminologies associated with BIA,	
	Different types of continuity planning, testing and revising the plan	
	Total	30

Text Books

- 1. M. Bishop, S.S. Venkatramanayya, *Introduction to Computer Security*, 1st edition, Pearson Education, 2014.
- 2. M. Whitman, H. Mattford, Principles of Information Security, 6th edition, Cengage Learning, 2017.
- 3. C. Pfleeger, S. Pfleeger, Security in Computing, 5th edition, Pearson Education, 2015.

Reference Books

- 1. A. Kahate, Cryptography & Network Security, 3rd edition, Tata McGrawHill, 2017
- 2. W. Stallings, Cryptography and Network Security Principles and Practice, 7th edition, Pearson Education, 2017
- 3. Mark Rhodes-Ousley, Information Security: The Complete Reference, 2nd edition, McGraw Hill Education, , 2013.

Laboratory/ Tutorial Work

8 to 10 experiments (and a practicum where applicable) based on the syllabus.

Signature

